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Blind Deconvolution 
 

Abstract:  
 Deconvolution as an inverse problem is included in many signal and image processing 
tasks, as e.g. in seismic and ultrasound reflectivity measurements, in signal equalization 
and image processing. Closely related to this task are Blind Source Separation problems. 
In the latter problem we have at least as much signals as sources, whereas in 
deconvolution problems only a single time or space delayed signal is available. 
Dependent on the fact whether the PSF is known or unknown, we distinguish between 
blind and non-blind deconvolution. 
The aim of deconvolution is the reconstruction (estimation û(k)) of the original signal 
u(k) disturbed by the system H(z) and degraded by noise η(k) from the measured signal 
v(k).  
 
Optimization algorithms can achieve the solution of this task. The quantity which may be 
optimized can be chosen in different way according to the given measurement problem. 
Least square approaches occasionally offer suboptimal results and may produce spurious 
unphysical solutions.  
 
 
 
 
 
This can be improved by additionally constraints as positivity or band limitation. A 
further approach can be weighted least squares or preconditioning for improving stability. 
 
 
 
 
 
 
 
 
 
Discribing the imaging process by tensor T,  
 
 
 
we can also solve the iteration for the (unknown) PSF z in the same way. 
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Using additionally statistical information fv about the imaging process leads to maximum 
or minimum entropy H, 
 
 
 maximum information I,  
 
 
or maximum likelihood L -deconvolution methods.  
 
 
 
 
 
 
 
 
 
 
In fluorescence imaging Poisson or Gaussian noise statistics given by the probability p is 
mostly assumed, depending on the number of photon counts. 
 
 
 
 
 
  
For stability, we often have to choose a proper regularization, which may be given by 
prior knowledge. For instance, we can assume smoothness or entropy reduction also as 
additional constraints. 
 
 
 
  
 
 
 
 
 
 
Simplified assuming Gaussian noise with N(0, σn)  for the DIC images, we can optimize 
the likelihood p(v|u) of the measured image v under condition of the theoretical image 
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model u.  Separating the problem in an optimization according to image noise statistics M  
and PSF model N, we can optimize the parameter of our PSF model given by two 
opposite Gaussians, which should simulate the differentiation property of DIC, with the 
values of height A1, A2 and spread σ1, σ2 displaced by shear τ.  
 
 
 
 
 
 
 
 
 
 
 
 
Results 
1.                                                                2.  

 
3.         

 
 

1. Original DIC image 
2. Result of iterative deconvolution and preconditioning, 20 iteration,  
3. Result of blind deconvolution 
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HDFormGen: A Fast Nonlinear Approximation
Formula Generator for Very High Dimensional
Data Based on Variable Selection and Genetic
Programming

Werner Groißböck

Department of Knowledge-Based Mathematical Systems
Fuzzy Logic Laboratorium Linz-Hagenberg
Johannes Kepler University Linz, A-4040 Linz, Austria
werner.groissboeck@jku.at

Summary. A new approach for finding nonlinear approximation formulas for very
high-dimensional data is presented. This method has been developed for static data
analysis, but it can be used for dynamic data analysis as well. The method is based
on linear regression, but instead of the original variables we use nonlinear terms
with these variables. Such a formula is still linear in the parameters, so ordinary
least squares methods can be applied to find the globally optimal parameters. We
use an accelerated version of genetic programming to find the optimal nonlinear
terms, and we use variable selection methods to select those terms leading to an
approximation formula which shows an optimal balance of accuracy and simplicity.
In general, evolutionary methods like genetic programming tend to produce many
individuals with low fitness. To save computation time, an early stopping strat-
egy in case of low fitness is used. The method was tested with three benchmark
data sets (the auto-mpg data set and the CPU data set in the UCI repository
http://www.ics.uci.edu/ mlearn/MLRepository.html and the friedman data set in
the KEEL repository http://sci2s.ugr.es/keel/). Although these data sets are only
low dimensional and thus not in the core application area of our method, for the
auto-mpg data set, an approximation formula has been determined, whose accuracy
is comparable to the benchmark papers, for the CPU data set, an approximation
formula has been achieved which is more exact than most of the benchmark papers,
and for the friedman data set, an approximation formula has been determined which
is more exact than all of the benchmark papers found so far.

1 Introduction

In the car industry, an engine test bench system is used which can measure up
to 1500 variables. From time to time, some parts of the measurement system
are in an invalid state, maybe because one of the sensors is overheated. To
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safe time and money, such an invalid state has to be detected as soon as
possible, and the experiment has to be aborted as soon as possible. So a
system is needed, which can detect faults.
For most of the variables measured useful expert knowledge is not available.
For this reason, only data driven methods can be used. Different methods are
available. The major challenge is that the methods have to deal with a very
high dimensionality.

The method HDFormGen (A fast nonlinear Formula Generator for
High Dimensional Data) can be used to find a nonlinear approximation
formula for very high dimensional data. To demonstrate the strength of
our approach, the following artificial data set with 201 variables and 800
entries has been constructed: The variables x1, x2, ...., x200 are filled with
independent standard normally distributed numbers. The remaining variable
(which we call y) is determined with the following formula:

y =x1 · (0.3 · x5 − 0.6 · (x3 · x5 + x2 · x6) (1)
+ 0.2 · (x2 · x4 · x6 + x2 · x3 · x7 + x3 · x4 · x5 − x5 · x6 · x7))

We want to find an approximation formula for the variable y. 1 So we want
to see if our only data driven method can find any reasonable results. After
running our algorithm for half an hour (all our results have been processed
on a 1600MHz pentium laptop) the following formula has been achieved:

y =9.4589e − 008
− 0.6 · (x6 · (x2 · x1))
− 0.6 · ((x3 · x5) · x1)
+ 0.3 · (x1 · x5) (2)
+ 0.2 · ((x7 · x3) · (x2 · x1))
+ 0.2 · (((x1 · x4) · x5) · x3)
+ 0.2 · ((x6 · x1) · (x4 · x2))
− 0.2 · ((x1 · (x5 · x6)) · x7)

This formula is nearly identical to a simplified form of the formula in 1. The
only difference is the constant 9.4589e−008, which is caused by the limitations
of machine accuracy. The most important question is: Does the algorithm still
work, when data sets containing noise have to be analyzed? To answer this
question, the data set described above is used again, but now to each vari-
able a certain amount of noise is added, before our algorithm is applied. As
noise we use independent standard normally distributed numbers, which are
divided by ten.
1 The estimated standard deviation of y is 0.81222, so it is not zero, which would

make the task trivial.
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After an average time consumption of about 4.5 hours, the following approx-
imation formula (for the noisy data set) can be achieved:

y =0.0097468
− 0.56631 · (x1 · (x2 · x6))
− 0.57815 · ((x1 · x3) · x5)
+ 0.28516 · (x1 · x5) (3)
+ 0.18876 · (x2 · ((x1 · x7) · x3))
+ 0.18276 · (x1 · (x5 · (x3 · x4)))
− 0.17787 · (x1 · (x5 · (x6 · x7)))
+ 0.18482 · (((x4 · x6) · x1) · x2)

This formula is not identical to the formulas above. But if the subterms are
compared, then we can see that all the subterms in formula 3 can also be
found in formula 2 and vice versa. So the only real differences are the exact
values of the parameters before each nonlinear subterm in the formulas. For
example for the subterm with x1, x3 and x5, we get the parameter −0.57815
instead of the parameter −0.6. This slight modification of the parameters is a
consequence of the noise that has been added to the data variables. If a data
based method is used, and if you have to deal with noisy data, then a certain
amount of error in the models achieved can never be avoided.
Conclusion: We have been able to find a formula that is ’nearly’ equivalent to
the formulas in 1 and 2. The only relevant differences are the real parameters
in the formulas. For finding the correct parameters, we use the least squares
algorithm, which finds the globally optimal parameter setting. Finally, the
correct structure of the formula is found, and the globally optimal parameter
setting!

2 The approximation formula generator HDFormGen

In this paper, the new algorithm HDFormGen (A Formula Generator for
High Dimensional Data) is introduced which is able to find an approximation
formula with nonlinear terms for a high dimensional regression data set. With
this algorithm, formulas similar to the following can been achieved:

y = β0 + β1 · x1 · x100 + β2 · sin(x77) + β3 · exp(x5/x6)

The basic idea of the algorithm is the following:

• The structure of each of the nonlinear terms in the whole formula is found
and optimized with the use of genetic programming (see [5]).

• The parameters of the formula can be optimized easily with a least squares
algorithm. This can only be done, if the formula is linear in the parameters,
so the genetic programming tool must not generate terms which contain
additional parameters.
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There is another aspect that has to be considered:
The terms that are used in the approximation formula finally shall be as
uncorrelated to each other as possible. We want an approximation formula
which is on the one hand as simple as possible, and on the other hand as exact
as possible. So we have to find the most important nonlinear terms, such that
the regression formula based on these terms is as good as possible. Variable
selection methods like forward selection have been designed to fulfill this task.
In HDFormGen a variant of forward selection is used. For this reason, the
basic concept of forward selection will be explained in the following rows:

• At first, the most important variable (or nonlinear term) is selected. This
is that variable (or term) which is correlated strongest to the actual de-
pendent y.

• Then the effects of the variables/terms selected so far are subtracted from
the original dependent y. This is necessary to avoid that variables that are
highly correlated to the first choice will be chosen again and again.

• Then, again the most important variable/term is selected.
• And again, the dependent is modified, such that the effects of the vari-

ables/terms chosen already are eliminated.
• Continue in this manner, until enough variables/terms are selected.

3 The new algorithm HDFormGen

3.1 The core of the new algorithm

In the following, the original dependent is called y. At the beginning, the
actual dependent is the original dependent yactual = y . Later yactual will be
modified. The constant term c = (1, . . . , 1)T is always the first variable that
is chosen. But this variable is not counted as real variable. The algorithm
performs the following steps:

1. An accelerated version of genetic programming (including a population of
individuals and a crossover operator) is used to generate millions of very
simple formulas. We select that formula xA which is best correlated with
the actual dependent yactual. We look only at the absolute value of the
correlation coefficient.

2. Then we modify yactual such that all the parts of y that can be approxi-
mated with the regressors already chosen are subtracted, setting yactual to
y − ŷ(c, xA). Here ŷ(c, xA) is the linear best approximation of y with the
use of the regressors c and xA. We can say, yactual is y made orthogonal
to the regressors already chosen.

3. Once again the accelerated version of genetic programming is used to
generate millions of very simple formulas. And now we select that formula
xB which is correlated strongest with the actual dependent yactual. We
look only at absolute values again.
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4. Then once again, yactual is made orthogonal to the regressors already
chosen, so we set yactual to y − ŷ(c, xA, xB).

5. Continue in this manner, until a given number of regressor terms is se-
lected or some other termination criterion is fulfilled.

3.2 The accelerated version of genetic programming - an overview

Stopping the calculation of the correlation coefficient as early as possible, when
it can be seen that the checked individual is not worth spending additional
time, accelerates the algorithm enormously. But how can this be carried out,
if we have a population of individuals and not a single individual? In the fol-
lowing lines the major steps of the accelerated genetic programming algorithm
are described.

1. Generate an initial population with popsize individuals.
2. Evaluate each individual for n1 points of the training data set and estimate

the correlation coefficient with the actual dependent by using only these
n1 points.

3. Determine the popsizesmall best correlated individuals out of popsize,
based on the estimated correlation coefficient. We look only at the absolute
value of the correlation coefficient.

4. For these popsizesmall chosen individuals the exact value of the fitness
function (i.e. the absolute value of the correlation coefficient) using all
the points of the training data set has to be calculated.

5. Produce a new generation of popsize out of the popsizesmall chosen indi-
viduals:
• Repeat the following, until we have enough new individuals. Choose

randomly two of the popsizesmall individuals and compare their fitness.
The better one is called the winner, and the other one is called the
loser. Let the winner produce two offsprings, one is an exact copy of
the winner, and the other offspring is made via crossover (as crossover
partner, one of the popsizesmall individuals is chosen, which is neither
the winner nor the loser).

• The individual which is the best so far is always copied into the next
generation (’elitism’).

• A small part of the new generation is produced in the same way as the
initial population. This is one way of avoiding the problem with local
optima. A mutation is not needed any more.

6. Go to step 2, until a termination criterion is fulfilled.

• As termination criterion, we usually take that a specific number of gener-
ations is reached.

• The parameter popsize determines, how many individuals are evolved in
the genetic programming algorithm. The parameter popsize can take any
positive integer number. The larger popsize is, the more computation time
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is needed, and the better the results are. In our experiments, a popsize of
5000 has been used successfully.

• The parameter n1 tells the algorithm, how many points are used to get
a quick estimation of the correlation coefficient. n1 can be an arbitrary
positive integer, but n1 shall not exceed the number of training data points.
In our experiments, settings of n1 = 30, n1 = 50 and n1 = 100 have been
used successfully.

• The parameter popsizesmall determines, how many individuals of the total
population are selected to be examined in detail. The value of popsizesmall

shall be much smaller than popsize, for example popsize/10.

4 Variants of the Formula Generator Algorithm Applied
To Standard Benchmark Data Sets

4.1 The data set cpu

The data set ’cpu’ can be found in the directory ’cpu-performance’ of the
UCI-repository, which can be found in the following address:

http://www.ics.uci.edu/~mlearn/MLRepository.html

Number of instances: 209
Number of attributes: 10
The data set contains the following attributes:

vendor name: string
model name: string
MYCT: machine cycle time in nanoseconds (integer)
MMIN: minimum main memory in kilobytes (integer)
MMAX: maximum main memory in kilobytes (integer)
CACH: cache memory in kilobytes (integer)
CHMIN: minimum channels in units (integer)
CHMAX: maximum channels in units (integer)
PRP: published relative performance (integer); the dependent variable;
ERP: estimated relative performance via linear regression (integer)

At first we deleted the attributes vendorname and modelname because our
algorithm can not handle strings. Furthermore the data set contains the at-
tribute ERP , which is an old estimation for PRP . So we have to delete the
attribute ERP , because we do not want to generate an approximation for-
mula by using the results of an old approximation. This would be too easy. So
finally we have only 7 attributes remaining. Before the core of our algorithm
has been run, we split the data into two parts: 70% of the 209 instances have
been randomly chosen to play the role of the training data. And the other 30%
play the role of the test-data.
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Our algorithm has been started 10 times. Roughly 3.7 seconds are neces-
sary per term for performing the evolutionary part of the algorithm. Totally
we received ten approximation formulas, with an average MAE of 23.33 de-
termined for the test data set. The worst MAE is only 25.15, and the best
MAE is 23.06. The best formula is the following:

PRP =16.344
+ 0.0032443 · (sqrtabs((MMIN · (MMAX · CHMAX)))) (4)
+ 0.7936 · ((CACH − CHMAX) − sin(CHMAX))

The MSE of this formula is 1394.9, and the RMSE is 37.348. In our standard
benchmark paper (see [7]), various different methods have been tried out. The
best method leads to an MAE of 38.0. So compared to this paper, our method
leads to a more exact approximation.

Additionally, newer papers (see [10], [12], [2] and [1]) have been found,
where the data set cpu is used.

Conclusion: In these papers, totally 30 variants of standard
methods have been tried out. Only in 5 out of 30 cases, our
approximation formula is outperformed.

4.2 The data set friedman

The data set ’friedman’ can be found in the KEEL repository, in the following
location:

http://sci2s.ugr.es/keel/datasets1.php?SID&codeds=36

In the keel repository, benchmark papers can be found. For the friedman
data set, a quite actual (2004) benchmark paper is mentioned via the abbre-
viation ’Lee04’ (see [6]).

We try to design our experiments as similar as possible to the benchmark
paper, to get comparable results. In the benchmark paper, the following is
done:

’This is a synthetic benchmark data set. Each sample consists of
five inputs and one output. The formula for the data generation is
y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4

4 + 5x5
5 + ε, where ε is a Gaussian

random noise N(0, 1), and x1, ..., x5 are uniformly distributed over the do-
main [0, 1]. 1400 samples were created, of which 200 samples were randomly
chosen for network training and 200 samples for validation. The remaining
1000 samples were used for network testing.’

In the KEEL repository, the data sets are already available as described
in [6]. So we have a 200 sample training data set, and a 200 sample validation
data set, and a 1000 sample test data set. Unlike the benchmark paper, we do
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not need any validation data. So we only take the 200 sample training data
set to find an approximation formula, and we take the 1000 sample test data
set to determine the quality. As a quality measure, here the MSE is used,
according to the benchmark data.

Our formula detection algorithm has been run 20 times. Here we
need 13 seconds for each term, and 30 second for finding the total formula,
because the formula consists of two nonlinear terms, and four seconds are
needed in the non-evolutionary part of the algorithm. The best formula that
we get is the following:

out =4.8843
+ 10.1761 · (in4 + sin((in2 · (in1 + (in1 + in1)))))
− 5.3183 · (sin((in3 + (in3 + in3))) − in5) (5)

The MAE of this formula is 0.889281, the MSE of this formula is 1.23629,
and the RMSE is 1.11189. In the benchmark-paper (see [6]), the best method
leads to an MSE of 4.502. So our formula is much more exact.

Cross-validation and the data set friedman

For the dataset friedman, a tenfold cross validation experiment has been
performed. For this experiment, a 1200-sample version of the friedman data
set has been used, which can be downloaded from the KEEL repository, in
the following location:

http://sci2s.ugr.es/keel/datasets1.php?SID&codeds=36

After the cross-validation, we have to calculate the average error measures
on the test data files. We get an average MAE of 0.8394133, an average MSE
of 1.1127881, and an average RMSE of 1.0537323 .

So with cross validation, we finally get ten formulas. The formula, which
reaches the best quality on the corresponding test data set, is the following
formula:

out =4.9946
− 10.1215 · (sin(((in2 · in1) · (1.051813 · −2.92026))) − in4)
+ 20.4701 · ((in3 · in3) − ((−0.2465477 · in5) + in3))
+ 2.9015 · ((0.3611782 − (in1 · in2)) · (in1 · sin(in3))) (6)

This formula reached (on the test data set number 10) an MAE of 0.786382,
an MSE of 0.963263, and an RMSE of 0.981459627 . The name of the cor-
responding test data file in the KEEL repository is ’Friedman-10-10tst.dat’,
so everybody is invited to check the quality of the formula! It has to be
mentioned that here the best formula out of ten has been selected (via the
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test data), so we can not expected to get such a result in average. The
average qualities have been stated above, and are more important.

Conclusion: For the friedman data set, all the benchmark pa-
pers that we found so far (see [3], [6] and [11]), have been
outperformed by our method.
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1 Introduction 1

1 Introduction

Many-valued logics are usually based on a bounded lattice(L,≤, 0, 1) of truth values [7,8,16,20,
21]. In such a case, the conjunction is interpreted by some triangular norm onL. Most oftenL is
chosen to be the unit interval and as such several principles for constructing t-norms on the unit
interval are known like, e.g., additive and multiplicative generators or ordinal sums of t-norms
and t-subnorms (for an overview on different methods see, e.g., [12, 13]). The latter ones are
of particular importance, since, on the one hand, continuous t-norms (t-subnorms) on the unit
interval are either the minimum or exactly ordinal sums of continuous Archimedean t-norms (and
possibly, continuous Archimedean t-subnorms, see, e.g., [15,18,19]) and since, on the other hand,
ordinal sums of t-subnorms represent the most general way to obtain a t-norm as an ordinal sum
of semigroups as introduced by Clifford [9,14].

Besides, lattices in general have been of interest as set of truth values such that triangular
norms on these lattices have been investigated (see, e.g., [3–5, 10, 11, 25, 17, 22, 23]). Particularly
in [22, 23], ordinal sum t-norms on bounded latticesL have been studied where the summands
based on subintervals resp. sublattices ofL have been t-norms on the corresponding sets only. It
is remarkable that the demand for an arbitrary selection of the summand carriers which have to
be pairwise disjoint except for their boundaries restricts the set of admissible bounded lattices to
horizontal sums of chains. By this, the close relationship between the lattice structure itself and
the possible choices for ordinal sum t-norms is exemplified. In this contribution, we will focus
on ordinal sum t-norms on bounded lattices allowing also t-subnorms as summand operations on
subintervals.

The following section provides the basic preliminaries and results on ordinal sums of posets
and of semigroups, particularly of t-norms. Then we will turn to ordinal sum t-norms with t-norm
summands on some bounded lattice and finally to ordinal sums on bounded lattices with t-subnorm
summands as well.

2 Preliminaries

2.1 On some types of ordinal sums

Different types of ordinal sum concepts are used throughout the literature. One particular approach
for building ordinal sums of disjoint posets is provided in [1] and can be generalized as follows:

Definition 2.1 Consider a linearly ordered index set(I,�I), I 6= ∅ and a family of pairwise
disjoint posets(Xi,≤i)i∈I . Theordinal sum⊕i∈IXi (in the sense of Birkhoff) is defined as the
set∪i∈IXi with the following order≤ given by

x ≤ y ⇔ (∃i ∈ I : x, y ∈ Xi ∧ x ≤i y) or (∃i, j ∈ I : x ∈ Xi ∧ y ∈ Xj ∧ i ≺I j).

Note that by building ordinal sums of posets the preservation of the order of the underlying
posets is guaranteed. Keeping this intention, we can relax the disjointness condition and introduce
ordinal sums of intervals. Note that for any elementsa, b of a poset(X,≤X) with a ≤X b,
the interval[a, b] is defined as[a, b] = {x ∈ X | a ≤X x ≤X b} and we will denote by
]a, b[ = [a, b] \ {a, b}.
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Definition 2.2 Consider a linearly ordered index set(I,�), I 6= ∅ and a family of intervals
([ai, bi])i∈I such that for alli, j ∈ I with i ≺ j either[ai, bi] and[aj , bj ] are disjoint orbi = aj .
Theordinal sum⊕i∈I [ai, bi] is the set∪i∈I [ai, bi] equipped with the order≤ defined by

x ≤ y ⇔ (∃i ∈ I : x, y ∈ [ai, bi] ∧ x ≤i y) or (∃i, j ∈ I : x ∈ [ai, bi] ∧ y ∈ [aj , bj ] ∧ i ≺ j).

In [2], ordinal sums have been introduced in the context of abstract semigroups in order to
construct a new semigroup from a given family of semigroups. The basic idea is to extend an
ordinally ordered system of non-overlapping semigroups into a single semigroup whose carrier is
equal to the union of the original carriers.

Definition 2.3 [2] Let (I,�), I 6= ∅ be a linearly ordered index set,(Xi)i∈I a family of pairwise
disjoint sets, and(Gi)i∈I with Gi = (Xi, ∗i) a family of semigroups. PutX = ∪i∈IXi and define
the binary operation∗ onX by

x ∗ y =


x ∗i y if (x, y) ∈ Xi ×Xi,

x if (x, y) ∈ Xi ×Xj andi ≺ j,

y if (x, y) ∈ Xi ×Xj andi � j.

Then we say that(X, ∗) is theordinal sumof all (Xi, ∗i)i∈I . If necessary, we will refer to this
type of ordinal sum asordinal sum in the sense of Clifford.

Proposition 2.4 [2] With all the assumptions of the previous definition the ordinal sum(X, ∗) is
also a semigroup, i.e.,∗ is an associative operation onX.

Similar as in the case of ordinal sums in the sense of Birkhoff the condition of disjointness can
be and has been relaxed for the case of ordinal sums in the sense of Clifford.

Proposition 2.5 [2] Let (I,�), I 6= ∅ be a linearly ordered set,(Xi)i∈I a family of sets, and
(Gi)i∈I with Gi = (Xi, ∗i) a family of semigroups.

Assume that for alli, j ∈ I with i ≺ j the setsXi andXj are either disjoint or thatXi∩Xj =
{xij}, wherexij is both the unit element ofGi and the annihilator ofGj , and where for each
k ∈ I with i ≺ k ≺ j we haveXk = {xij}. PutX = ∪i∈IXi and define the binary operation∗
onX by

x ∗ y =


x ∗i y, if (x, y) ∈ Xi ×Xi,
x, if (x, y) ∈ Xi ×Xj andi ≺ j,
y, if (x, y) ∈ Xi ×Xj andi � j.

Then(X, ∗) is a semigroup.

Note that ordinality in the sense of Clifford refers to the linear order of the index setI involved.
The elements of someXi, i ∈ I, need not fulfill some special order relation. On the other hand,
taking into account that equality is an order relation on any set we immediately can state the
following corollary.
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Corollary 2.6 Any ordinal sum in the sense of Clifford can be expressed as an associative opera-
tion on an ordinal sum of a family of sets in the sense of Birkhoff. Furthermore, it can be written
as

x ∗ y =
{

x ∗i y, if (x, y) ∈ X2
i ,

x ∧ y, otherwise.

with the corresponding conditions and notions from above.

In the case of t-norms on the real unit interval[0, 1] a variant of the construction of ordinal
sums in the sense of Clifford was proposed (see, e.g., [6,13,15,24]).

Definition 2.7 Let (]ai, bi[)i∈I be a family of pairwise disjoint open subintervals of[0, 1] and let
(Ti)i∈I be a family of t-norms. Then theordinal sumT = (〈ai, bi, Ti〉)i∈I : [0, 1]2 → [0, 1] is
given by

T (x, y) =

{
ai + (bi − ai)Ti( x−ai

bi−ai
, y−ai

bi−ai
), if (x, y) ∈ [ai, bi]

2 ,

min(x, y), otherwise.

This type of ordinal sums is calledordinal sum of t-norms.

Note that ordinal sums of t-norms can be viewed as ordinal sums in the sense of Clifford
(relaxing the disjointness requirement by allowing intervals overlapping in the boundary elements,
and filling the gaps with the minimum). Therefore, associativity, monotonicity, commutativity and
the neutral element are preserved by the construction process, and each ordinal sum of t-norms is
again a t-norm.

2.2 Triangular norms and triangular subnorms on lattices

Consider a bounded lattice(L,∧,∨, 0, 1) with bottom element0 and top element1. A binary
operationT : L2 → L which is commutative, associative, non-decreasing in both arguments and
has1 as neutral element is called at-norm onL (compare [4,22]). A binary operationV : L2 → L
which is commutative, associative, non-decreasing in both arguments and bounded from above by
∧ is called at-subnorm onL. Note that the structure of the latticeL heavily influences which and
how many t-norms and t-subnorms onL can be defined. However, there exist, e.g., at least two
t-norms for arbitrary bounded latticesL with |L| > 2, i.e., the minimumTM

L(x, y) = x ∧ y and
the drastic product

TD
L =

{
x ∧ y, if 1 ∈ {x, y},
0, otherwise,

which are also the greatest and smallest possible t-norms on the corresponding latticeL.

3 Ordinal sums with t-norm summands

Before turning to ordinal sums involving t-subnorms as summands, let us first recall some results
of ordinal sum t-norms where the summands are t-norms as well.
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Definition 3.1 Consider some bounded lattice(L,∧,∨, 0, 1) and some linearly ordered index set
I. Further, let(]ai, bi[)i∈I be a family of pairwise disjoint subintervals ofL and(Ti)i∈I a family
of t-norms on the corresponding[ai, bi]. Then theordinal sumT = (〈ai, bi, Ti〉)i∈I : L2 → L is
given by

T (x, y) =

{
Ti(x, y), if (x, y) ∈ [ai, bi]

2 ,

x ∧ y, otherwise.
(1)

Note that ifL = ⊕i∈I [ai, bi], then an ordinal sum in the sense of Definition 3.1 is an ordinal
sum in the sense of Clifford. But there also exist ordinal sum t-norms on lattices which are not an
ordinal sum of intervals (see also [22,23]). The following results provide necessary and sufficient
conditions for ordinal sums defined by (1) being a t-norm.

Proposition 3.2 [22] Consider some bounded lattice(L,∧,∨, 0, 1), some linearly ordered in-
dex set(I,�), I 6= ∅ and a family of pairwise disjoint subintervals(]ai, bi[)i∈I of L. Then the
following are equivalent:

(i) The ordinal sumT : L2 → L defined by(1) is a t-norm for arbitraryTi on [ai, bi].

(ii) For all x ∈ L and for all i ∈ I it holds that

(a) if x is incomparable toai, then it is incomparable to allu ∈ [ai, bi[,

(b) if x is incomparable tobi, then it is incomparable to allu ∈ ]ai, bi].

How can one be sure that the selected family of pairwise disjoint subintervals(]ai, bi[)i∈I of a
bounded lattice(L,∧,∨, 0, 1) is an admissible one for the construction of an ordinal sum t-norm?
Note that the condition can be equivalently formulated as if for allx ∈ L and alli ∈ I there exists
someu ∈ ]ai, bi[ such thatx is comparable tou, thenx is also comparable toai and tobi. This
motivates the following illustrating result.

Proposition 3.3 Consider some bounded lattice(L,∧,∨, 0, 1), some linearly ordered index set
(I,�), I 6= ∅, and a family of pairwise disjoint subintervals(]ai, bi[)i∈I of L. Denote byCL the
set of all maximal chains inL containing0 and1. Then the following are equivalent:

(i) For all C ∈ CL and for all i ∈ I it holds thatC ∩ ]ai, bi[ 6= ∅ ⇒ {ai, bi} ⊆ C.

(ii) For all x ∈ L and for all i ∈ I it holds that

(a) if x is incomparable toai, then it is incomparable to allu ∈ [ai, bi[,

(b) if x is incomparable tobi, then it is incomparable to allu ∈ ]ai, bi].

Note that in case thatC ∩ [ai, bi] 6= ∅ it need not follow thatC ∩ [ai, bi] = [ai, bi].

Now we look for conditions on the latticeL ensuring that, for arbitrary families of
subintervals and arbitrary t-norm summands, the operationT defined by (1) is also a t-
norm. Recall that a bounded poset(X,≤, 0, 1) is called ahorizontal sumof bounded posets
((Xi,≤i, 0, 1))i∈I if Xi ∩Xj = {0, 1} wheneveri 6= j, X =

⋃
i∈I Xi, andx ≤ y if and only if

there is ani ∈ I such that{x, y} ⊆ Xi andx ≤i y.
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Proposition 3.4 [22] Consider some bounded lattice(L,∧,∨, 0, 1). Then the following are
equivalent:

(i) The ordinal sumT as defined by(1) is a t-norm for arbitrary families of pairwise disjoint
subintervals(]ai, bi[)i∈I and for arbitrary t-norms(Ti)i∈I on the corresponding[ai, bi].

(ii) (L,∧,∨, 0, 1) is a horizontal sum of chains.

In this case the setCL of all maximal chains containing0 and1 coincides with the chains of the
horizontal sum lattice. Moreover, each chain involved can be reconstructed byC ∩ L for some
C ∈ CL.

4 Ordinal sums with t-subnorm summands

Let us now turn to ordinal sums which are built from t-subnorm summands.

Definition 4.1 Consider some bounded lattice(L,∧,∨, 0, 1) and some linearly ordered index
set I. Further, let(]ai, bi[)i∈I be a family of pairwise disjoint subintervals ofL and (Vi)i∈I

a family of t-subnorms on the corresponding[ai, bi]. Then theordinal sum of t-subnorms
T = (〈ai, bi, Vi〉)i∈I : L2 → L is given by

T (x, y) =

{
Vi(x, y), if (x, y) ∈ ]ai, bi]

2 ,

x ∧ y, otherwise.
(2)

In the sequel we will focus on conditions for the lattice itself, the family of chosen intervals
and the family of corresponding summand operations for guaranteeing that the operationT defined
by (2) is again a t-norm. Note that Definition 4.1 is not identical with Definition 3.1 since the
domain whereT acts asVi differs in its boundaries. However, if allVi are t-norms or if all
subintervals[ai, bi] are pairwise disjoint the definitions coincide. Further note that the ordinal sum
of t-subnorms also differs from the notion of an ordinal sum in the sense of Clifford, since, e.g.,
T |]ai,bi]

2 need not be a semigroup operation on]ai, bi].

Lemma 4.2 Consider some bounded lattice(L,∧,∨, 0, 1) and some linearly ordered index setI.
Further, let(]ai, bi[)i∈I be a family of pairwise disjoint subintervals ofL and(Vi)i∈I a family of t-
subnorms on the corresponding[ai, bi]. Assume that the ordinal sumT = (〈ai, bi, Vi〉)i∈I : L2 →
L given by (2) is a t-norm, then for alli ∈ I, with bi = 1 it holds thatVi is a t-norm.

4.1 Ordinal sums with one summand only

For simplicity reasons, we restrict our considerations first to an ordinal sumT on some bounded
lattice(L,∧,∨, 0, 1) with one summand on some interval[a, b] only. Since in case thatb = 1, V
on [a, b] necessarily has to be a t-norm we assume thatb 6= 1. The operationT : L2 → L can then
be written as

T (x, y) =

{
V (x, y), if (x, y) ∈ ]a, b]2 ,

x ∧ y, otherwise.
(3)

with V some t-subnorm on[a, b] andb 6= 1.
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Lemma 4.3 Assume thatT : L2 → L defined by(3) is a t-norm for arbitraryV on [a, b], b 6= 1.
If somex ∈ L is incomparable toa then it is incomparable to allu ∈ [a, b].

Therefore, the incomparability of somex to a implies also its incomparability tob. Vice versa,
note that if somex ∈ L is incomparable tob then it is incomparable to allu ∈ ]a, b] due to
Prop. 3.2. However, it still might be comparable toa. In any case, the upper boundaryb plays
additionally a particular role when considering the ordinal sum with a t-subnorm summand.

Lemma 4.4 Consider an interval[a, b], b 6= 1 and a t-subnormV on [a, b]. If T : L2 → L
defined by(3) is a t-norm, then eitherb is the neutral element ofV , i.e.,V is a t-norm, or for all
x, y /∈ [a, b] it holds thatT (x, y) 6= b.

As a consequence, we can conclude the following for ordinal sums with arbitrary t-subnorm
summands.

Corollary 4.5 Consider an interval[a, b], b 6= 1 and assume thatT : L2 → L defined by(3) is a
t-norm for arbitrary t-subnormV on [a, b]. Then for allx, y /∈ [a, b] it holds thatT (x, y) /∈ ]a, b].

Finally, we achieve the following result providing necessary and sufficient conditions for an
ordinal sumT being also a t-norm for arbitrary t-subnormV on [a, b].

Proposition 4.6 Consider some bounded lattice(L,∧,∨, 0, 1) and a subinterval[a, b], b 6= 1.
Then the following are equivalent:

(i) The ordinal sumT : L2 → L defined by(3) is a t-norm for arbitrary t-subnormV on [a, b].

(ii) For all x ∈ L it holds that

(a) if x is incomparable toa, then it is incomparable to allu ∈ [a, b],
(b) if x is incomparable tob, then it is incomparable to allu ∈ ]a, b],

and for allx, y /∈ [a, b] it follows thatT (x, y) /∈ ]a, b].

The conditions are rather restrictive, therefore, one might ask whether the situation relaxes for
bounded lattices which can be represented as ordinal sums of intervals.

Lemma 4.7 Consider some bounded lattice(L,∧,∨, 0, 1) and a subinterval[a, b], b 6= 1, such
thatL = [0, a]⊕[a, b]⊕[b, 1]. If there exists somec ∈ L, c >L b such thatL = [0, a]⊕[a, b]⊕[c, 1]
then the ordinal sumT : L2 → L defined by(3) is a t-norm for arbitrary t-subnormV on [a, b].

Note that such a valuec need not always exist althoughT on L is an ordinal sum of a t-subnorm
on [a, b], e.g., in case ofL = [0, 1] an arbitrary subinterval[a, b] and an arbitrary t-subnormV on
[a, b] can be chosen and stillT defined by (3) is a t-norm.

As we have already seen by ordinal sums with t-norm summands not all lattices are appropriate
candidates to fulfill the conditions of Prop. 3.2 for an arbitrary selection of the summand carriers
as well as of the summand operations. Similar results hold in case of ordinal sums of t-subnorms.

Proposition 4.8 Consider some bounded lattice(L,∧,∨, 0, 1). Then the following are equiva-
lent:

(i) For any [a, b] ⊆ L, b 6= 1, and any t-subnormV on [a, b] the ordinal sumT : L2 → L
defined by(3) is a t-norm.

(ii) L is a horizontal sum of chains.
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4.2 More summands

Finally, we mention the results in case that several summands are taken into account. Note that
the incomparability conditions as well as the property ofT in case that its arguments are not from
the same interval have to hold for all summand carriers. The structure of the lattice has again to
be a horizontal sum of chains in case that both summand carriers as well as t-subnorms on these
carriers are chosen arbitrarily.

Proposition 4.9 Consider a bounded lattice(L,∧,∨, 0, 1), some linearly ordered index set(I,�
), I 6= ∅ and a family of pairwise disjoint subintervals(]ai, bi[)i∈I , bi 6= 1 of L. Further, con-
sider a family of t-subnorms(Vi)i∈I acting on the corresponding[ai, bi]. Then the following are
equivalent:

(i) The ordinal sumT : L2 → L defined by(2) is a t-norm for arbitrary t-subnormVi on [ai, bi].

(ii) For all i ∈ I and for allx ∈ L it holds that

(a) if x is incomparable toai, then it is incomparable to allu ∈ [ai, bi],

(b) if x is incomparable tobi, then it is incomparable to allu ∈ ]ai, bi],

and for allx, y /∈ [ai, bi] it follows thatT (x, y) /∈ ]ai, bi].

Proposition 4.10 Consider some bounded lattice(L,∧,∨, 0, 1). Then the following are equiva-
lent:

(i) The ordinal sumT as defined by(2) is a t-norm for arbitrary families of pairwise disjoint
subintervals(]ai, bi[)i∈I , bi 6= 1 and for arbitrary t-subnorms(Vi)i∈I on the corresponding
[ai, bi].

(ii) L is a horizontal sum of chains.

5 Conclusion

We have investigated triangular norms on bounded lattices which are built as ordinal sums of t-
norms as well as of t-subnorms. We showed in which way the possibility of choosing t-subnorms
as summand operations further restricts the structure of the lattice, resp. demands further incom-
parability conditions for its elements and further restrictions on the operation itself. As in the case
of ordinal sums with t-norm summands bounded lattices which are horizontal sums of chains only
allow to choose the summand carriers as well as the summand operations arbitrarily.
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Abstract

In  this  presentation  we  will  give  an  introduction  to  the  machine  learning  framework  for  Mathematica  (mlf).  In
particular we will give a general overview of mlf`s features and demonstrate the latest improvements in version 1.5.

Introduction

The machine learning framework for Mathematica is a collection of powerful machine learning algorithms
integrated into a framework for the main purpose of data analysis. Fuzzy logic is one of its key techniques.
The framework allows for combining different machine learning algorithms to solve one single problem.
This combination of distinct algorithms may give the user unforeseen insights into its data. The algorithms
are highly parameterizable. Given this parameterizability combined with the efficient core engine of the
machine learning framework for Mathematica, the user is able to analyze their data interactively, with short
cycles of changing parameter settings and examining the results.

The most common task in data analysis is to find relations of a set of input  parameters to one or more
output  parameters. This kind of analysis is called supervised, as the goal of the analysis is given by the
user.  In  the  case that  no  explicit  goal  parameter  is  available,  the  analysis  is  called unsupervised.  The
machine learning framework provides algorithms for both kinds of tasks.

The machine learning framework for Mathematica combines
- efficiency and performance behind the scenes delivered by an optimized computational kernel - the core
engine - realized in C++, and
-  the  ease of  use supplied  by the manipulation,  descriptive  programming,  and graphical  capabilities of
Mathematica.

Powered by fuzzy logic

The framework draws its power from integrating  fuzzy logic wherever possible. This yields results where
crisp boolean yes/no decisions can be replaced with smooth, continuous transitions. In the realm of data
analysis, smooth results very often model the underlying correlations within the data more realistically than
crisp ones. For instance, the status of belonging to a certain class may be modeled more appropriately by
allowing overlaps and degrees of membership instead of only the two possibilities  of belonging or not
belonging.



Modern software architecture

The software architecture of the machine learning framework for Mathematica is based on the principles of
modern object-oriented and template-based programming. Standard libraries are used to ensure portability
of the C++ kernel.

Mathematica front end

The machine learning framework for Mathematica is used from the Mathematica front end. By using the
Mathematica front end, one has access to all Mathematica functions, including the graphical manipulation
tools, and, with the Mathematica programming language, one has access to an elegant scripting language.

Wide range of machine learning algorithms

The machine learning framework  for Mathematica  covers a wide range of machine learning algorithms
which can be integrated to work together and therefore yield new results.

Supervised Learning
- FS-ID3 (fuzzy decision trees) 
- FS-LiRT (fuzzy regression trees)
- FS-FOIL (fuzzy rule learning) 
- FS-MINER (fuzzy rule learning) 
- LAPOC (optimization of fuzzy controllers / regression trees)
- RENO (optimization of fuzzy controllers)
- Ridge regression
- Additive regression
- Quadratic regression model
- Neuronal networks

Unsupervised Learning
- SOM (Kohonen maps) 
- Fuzzy k-means (clustering) 
- WARD clustering (crisp clustering)
- LVQ (learned vector quantisation)

Additional features
- Fuzzy logic (using different types of fuzzy sets and t-norms) 
- Fuzzy inference (Mamdani, Sugeno, Tagaki-Sugeno-Kang)
- Advanced data visualisation and data manipulation 
- Statistical methods (including correlation plots, mutual information with plots, etc)



Behind the machine learning framework for Mathematica

The machine learning framework for Mathematica  is developed by Software Competence Center Hagen-
berg GmbH (SCCH) and is owned and distributed by uni software plus GmbH.
Software Competence Center Hagenberg GmbH, Hagenberg,  Austria,  is a company in the realm of the
Kplus programme, which was established by the Austrian government. This software was developed and is
supported  by  the  Knowledge  Based  Technology  area  of  the  Software  Competence  Center  Hagenberg
GmbH. uni software plus GmbH, Linz, Austria, has ten years of experience in distributing Mathematica
and Mathematica based solutions. uni software plus GmbH collaborates with Wolfram Research, Inc., for
worldwide distribution.




