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Abstract
In the first paragraph the well know principle of
sliding mode control is presented. There exist many
different approaches using the sliding mMode con-
troller as foundation for implementation with fuzzy
formulations. In [3] a critical review of Fuzzy Slid-
ing Mode Control FSMC approaches is presented.
This knowledge forms a kind of marker for the con-
tinuative work.

1 Introduction

In literature there are two different classes for the
term Fuzzy Sliding Mode Control FSMC. Firstly,
there are algorithms based on the traditional slid-
ing mode control, but the signum function is re-
placed by a fuzzy map. Secondly, there are algo-
rithms which try to approximate the input/output
map of the traditional sliding mode control. The
next section deals with a short review to the tradi-
tional sliding mode control. In section 3 different
approaches for FSMC are summarized.

2 Sliding Mode Control

With the state space vector

x =
[

x ẋ · · · x(n−1)
]T (1)

the plant model has the form

x(n) = f(x(t)) + u(t) + d(t), (2)

where u(t) is the control signal and d(t) is an
unknown disturbance. The control objective is to

set the control signal u(t), such that the control
error e = xd−x=

[
e ė · · · e(n−1)

]T becomes
zero e = 0 with xd as the desired time variing state.
This is indirectly implemented with the differential
equation

0 = q(e) =
(

∂

∂t
+ λ

)n−1

e

=
(

n− 1
0

)
e(n−1) +

(
n− 1

1

)
λe(n−2) + · · ·+ λn−1e

= e(n−1) + gλ(e), (3)

where λ > 0. If the control error fulfilles (3) he
is going to get zero for an arbitrary initial state
x0, i.e. if q(e) = 0 the original control objective
is reached! The function q2(e) is definitely always
positive except for the control objective q(e) = 0.
Geometrical, q(e) = 0 defines a hyperplane in the
n-dimensional space of e, the so called sliding sur-
face. Therefore, if

∂

∂t

(
q2(e)

)
< −2η |q(e)| η ≥ 0, (4)

holds, q2(e) becomes zero and so q(e), too. Why
was the original control objective replaced with this
overhead? (4) is equivalent to

qq̇ < −η |q| , (5)

i.e.
q̇sgn(q) < −η, (6)

which is of order one (instead of order n such the
original objective)! With (6) the plant (2) is forced
to reach the hyperplane and stay there for all time
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(in the time invariant case)! Differentiation of (3)
results with (2) and (6) in

q̇ = e(n) + gλ(ė) = x
(n)
d − x(n) + gλ(ė)

q̇ = gλ(ė)− f(x)− u− d + x
(n)
d(

gλ(ė)− f(x)− u− d + x
(n)
d

)
sgn(q) < −η. (7)

If the plant model is split up in f = f0 + ∆f ,
where f0 is the (correct) nominal model and

|∆f | < F

is the model uncertainty, the control signal (con-
stant U not specified yet) can set to

u = −f0(x) + gλ(ė) + x
(n)
d + Usgn(q) (8)

and the inequality (7) becomes

(−∆f(x)− d) sgn(q)− U < −η.

With the upper boundary for the disturbance
|d| < D, the constant in (8) becomes U ≥ F +D+η,
thus the sliding mode controller becomes with the
equals sign

u = −f0(x) + gλ(ė) + x
(n)
d + (F + D + η) sgn(q).

(9)
Remarks:

� The calculation of the error derivatives ist
problematic in the presence of noise (needs a
nonlinear observer for state estimations with
an accurate plant model).

� Parameters λ and F influence the robustness of
the overall system (expansion to n− 1 param-
eters with q(e) =

∑n−2
i=0 cie

(i) + e(n−1), where
the polynom c(s) = sn−1 + cn−2s

n−2 + · · · +
c1s + c0 has zeros with negative real part).

� With the signum function in (9) is the control
variable not continual, i.e. chattering along
the sliding surface occures (substitution with
a saturation function)!

3 Fuzzy Sliding Mode Con-
trol

3.1 Why a Fuzzy Approach?
A main focus of this thesis lies on the control of
complex industrial processes, where only sparse an-
alytical knowlegde is available. Instead, there exists

Figure 1: membership functions of the example in
[5]
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a data based model, e.g. Takagi-Sugeno model, to
describe the input/output behaviour of the plant.
In [5] is an illustrative example (10,11) of the in-
terpolation characteristic of a first-order TS-model
presented. Figure 1 shows the membership func-
tions and figure 2 illustrates the interpolation of
the two local linear models.

If u = small Then y = u (10)
If u = large Then y = 5u− 2.5 (11)

Conclusion:

� Without handling the interpolation (e.g. with
local linearization suggested in [5]) a tradi-
tional controller design is problematic (there
are negative derivatives during interpolation,
whereas in the local linear models derivatives
are all positive)!

� Fuzzy control structures are examinded to
handle the disadvantageous interpolation char-
acteristic in TS-models (actual topic of thesis)!

Therefore, fuzzy approaches for the sliding mode
control are analyzed in a first step.

3.2 Adaptive Sliding Mode Con-
trol

In [1, 4] there is an adaptive sliding mode controller
on basis of (9) presented. There, the constant U is
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Figure 2: interpolation of the two local linear mod-
els
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replaced through

U∗(x) = |∆f(x)|+ D + η, (12)

where asymptotic stability (Lyapunov) is guar-
anteed with an adaptation of the fuzzy characteris-
tic u =

∑
i ki(x)ui = uT k(x) as approximation of

(12) with
u̇ = γ |q|k(x) γ > 0, (13)

such that U(x) ≈ U∗(x). This could be an inter-
esting approach, especially in the case of time vari-
ing processes in combination with an online model
refinement!

3.3 Fuzzy Boundary Layer

This section is geared to [3] and summarizes the
results in a short manner. Fuzzy boundary layer
involves the replacement of the signum function in
(9) with a fuzzy map. The objective to use ”fuzzy”
is to get a smoother transition and therefore a re-
ducing of chattering is obtained.

Methods:

1. De Neyer and Gorez [6]: Fuzzy maps only a
saturation function. No significant improve-
ment over more traditional designs was shown.
The set of rules and membership functions
could possible be approximated by an explicit
equation.

2. Palm [7]: comparable results as in [8] but with
more overhead.

3. Ghalia and Alouani [8]: Use FSMC with two
fuzzy components, one to fuzzify the signum
function and one to fuzzify the gain F +D+η.
Analysis in [3] has shown that this proce-
dure duplicates a combination of the satura-
tion function and a simple gain scheduling ap-
proach, neither requires a fuzzy approach.

3.4 Fuzzy Lyapunov Function
In this approach a fuzzy controller is defined such
that the Lyapunov function

V (q) =
1
2
q2 (14)

V̇ (q) = qq̇ < −η |q|

holds like (5).
Methods:

1. Shih and Lu [9]: Useful for some types of prob-
lems, but with limitations (estimation of the
state and its derivatives as mentioned yet).

2. Wang [10]: Works with the objective to speed
up convergence to the sliding surface (3) and
works essentially with a saturation function.
Therefore, fuzzy approach could be replaced
by an excplicit expression as in the methods
before.

4 Conclusion

Sliding mode control was presented in his tradi-
tional form. It uses a nonlinear state model with
an arbitrary unknown disturbance signal. The con-
troller (9) uses a nominal model and the control
error with his derivatives. So, one focus in further
work lies on the analysis of how to use a TS-model
for f0(x) and opportunities to estimate the control
error e =

[
e ė · · · e(n−1)

]T . Especially the
influence of model uncertainties and the interpola-
tion characteristic of TS-model will be studied. In
[5] an approach for local linearization is presented,
which avoids unfavorable transitions between the
local linear equations in a TS-model. This could
be an important aspect in controller design and is
part of further work.
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Different approaches for FSMC was summerized
as in the work of [3] presented. It seems that
there are less improvements for using fuzzy in slid-
ing mode controls, but there will be more analysis
to proof this assertion. Therefore, categorized ap-
proaches for FSMC are going be analysed due to
there capabilities for robustness, steady state be-
haviour (integral characteristic) and the handling of
time variant plants in combination with an online
TS-model adaption. Another future aspect could
be the extension of the sliding mode control to mul-
tiple input multiple output MIMO plants and a
conversion to discrete time systems, but this has
less priority at that time.
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HDFormGen: A Fast Nonlinear Approximation
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Summary. A new approach for finding nonlinear approximation formulas for very
high-dimensional data is presented. This method has been developed for static data
analysis, but it can be used for dynamic data analysis as well. The method is based
on linear regression, but instead of the original variables we use nonlinear terms
with these variables. Such a formula is still linear in the parameters, so ordinary
least squares methods can be applied to find the globally optimal parameters. We
use an accelerated version of genetic programming to find the optimal nonlinear
terms, and we use variable selection methods to select those terms leading to an
approximation formula which shows an optimal balance of accuracy and simplicity.
In general, evolutionary methods like genetic programming tend to produce many
individuals with low fitness. To save computation time, an early stopping strat-
egy in case of low fitness is used. The method was tested with three benchmark
data sets (the auto-mpg data set and the CPU data set in the UCI repository
http://www.ics.uci.edu/ mlearn/MLRepository.html and the friedman data set in
the KEEL repository http://sci2s.ugr.es/keel/). Although these data sets are only
low dimensional and thus not in the core application area of our method, for the
auto-mpg data set, an approximation formula has been determined, whose accuracy
is comparable to the benchmark papers, for the CPU data set, an approximation
formula has been achieved which is more exact than most of the benchmark papers,
and for the friedman data set, an approximation formula has been determined which
is more exact than all of the benchmark papers found so far.

1 Introduction

In the car industry, an engine test bench system is used which can measure up
to 1500 variables. From time to time, some parts of the measurement system
are in an invalid state, maybe because one of the sensors is overheated. To
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safe time and money, such an invalid state has to be detected as soon as
possible, and the experiment has to be aborted as soon as possible. So a
system is needed, which can detect faults.
For most of the variables measured useful expert knowledge is not available.
For this reason, only data driven methods can be used. Different methods are
available. The major challenge is that the methods have to deal with a very
high dimensionality.

The method HDFormGen (A fast nonlinear Formula Generator for
High Dimensional Data) can be used to find a nonlinear approximation
formula for very high dimensional data. To demonstrate the strength of
our approach, the following artificial data set with 201 variables and 800
entries has been constructed: The variables x1, x2, ...., x200 are filled with
independent standard normally distributed numbers. The remaining variable
(which we call y) is determined with the following formula:

y =x1 · (0.3 · x5 − 0.6 · (x3 · x5 + x2 · x6) (1)
+ 0.2 · (x2 · x4 · x6 + x2 · x3 · x7 + x3 · x4 · x5 − x5 · x6 · x7))

We want to find an approximation formula for the variable y. 1 So we want
to see if our only data driven method can find any reasonable results. After
running our algorithm for half an hour (all our results have been processed
on a 1600MHz pentium laptop) the following formula has been achieved:

y =9.4589e − 008
− 0.6 · (x6 · (x2 · x1))
− 0.6 · ((x3 · x5) · x1)
+ 0.3 · (x1 · x5) (2)
+ 0.2 · ((x7 · x3) · (x2 · x1))
+ 0.2 · (((x1 · x4) · x5) · x3)
+ 0.2 · ((x6 · x1) · (x4 · x2))
− 0.2 · ((x1 · (x5 · x6)) · x7)

This formula is nearly identical to a simplified form of the formula in 1. The
only difference is the constant 9.4589e−008, which is caused by the limitations
of machine accuracy. The most important question is: Does the algorithm still
work, when data sets containing noise have to be analyzed? To answer this
question, the data set described above is used again, but now to each vari-
able a certain amount of noise is added, before our algorithm is applied. As
noise we use independent standard normally distributed numbers, which are
divided by ten.
1 The estimated standard deviation of y is 0.81222, so it is not zero, which would

make the task trivial.
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After an average time consumption of about 4.5 hours, the following approx-
imation formula (for the noisy data set) can be achieved:

y =0.0097468
− 0.56631 · (x1 · (x2 · x6))
− 0.57815 · ((x1 · x3) · x5)
+ 0.28516 · (x1 · x5) (3)
+ 0.18876 · (x2 · ((x1 · x7) · x3))
+ 0.18276 · (x1 · (x5 · (x3 · x4)))
− 0.17787 · (x1 · (x5 · (x6 · x7)))
+ 0.18482 · (((x4 · x6) · x1) · x2)

This formula is not identical to the formulas above. But if the subterms are
compared, then we can see that all the subterms in formula 3 can also be
found in formula 2 and vice versa. So the only real differences are the exact
values of the parameters before each nonlinear subterm in the formulas. For
example for the subterm with x1, x3 and x5, we get the parameter −0.57815
instead of the parameter −0.6. This slight modification of the parameters is a
consequence of the noise that has been added to the data variables. If a data
based method is used, and if you have to deal with noisy data, then a certain
amount of error in the models achieved can never be avoided.
Conclusion: We have been able to find a formula that is ’nearly’ equivalent to
the formulas in 1 and 2. The only relevant differences are the real parameters
in the formulas. For finding the correct parameters, we use the least squares
algorithm, which finds the globally optimal parameter setting. Finally, the
correct structure of the formula is found, and the globally optimal parameter
setting!

2 The approximation formula generator HDFormGen

In this paper, the new algorithm HDFormGen (A Formula Generator for
High Dimensional Data) is introduced which is able to find an approximation
formula with nonlinear terms for a high dimensional regression data set. With
this algorithm, formulas similar to the following can been achieved:

y = β0 + β1 · x1 · x100 + β2 · sin(x77) + β3 · exp(x5/x6)

The basic idea of the algorithm is the following:

• The structure of each of the nonlinear terms in the whole formula is found
and optimized with the use of genetic programming (see [5]).

• The parameters of the formula can be optimized easily with a least squares
algorithm. This can only be done, if the formula is linear in the parameters,
so the genetic programming tool must not generate terms which contain
additional parameters.
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There is another aspect that has to be considered:
The terms that are used in the approximation formula finally shall be as
uncorrelated to each other as possible. We want an approximation formula
which is on the one hand as simple as possible, and on the other hand as exact
as possible. So we have to find the most important nonlinear terms, such that
the regression formula based on these terms is as good as possible. Variable
selection methods like forward selection have been designed to fulfill this task.
In HDFormGen a variant of forward selection is used. For this reason, the
basic concept of forward selection will be explained in the following rows:

• At first, the most important variable (or nonlinear term) is selected. This
is that variable (or term) which is correlated strongest to the actual de-
pendent y.

• Then the effects of the variables/terms selected so far are subtracted from
the original dependent y. This is necessary to avoid that variables that are
highly correlated to the first choice will be chosen again and again.

• Then, again the most important variable/term is selected.
• And again, the dependent is modified, such that the effects of the vari-

ables/terms chosen already are eliminated.
• Continue in this manner, until enough variables/terms are selected.

3 The new algorithm HDFormGen

3.1 The core of the new algorithm

In the following, the original dependent is called y. At the beginning, the
actual dependent is the original dependent yactual = y . Later yactual will be
modified. The constant term c = (1, . . . , 1)T is always the first variable that
is chosen. But this variable is not counted as real variable. The algorithm
performs the following steps:

1. An accelerated version of genetic programming (including a population of
individuals and a crossover operator) is used to generate millions of very
simple formulas. We select that formula xA which is best correlated with
the actual dependent yactual. We look only at the absolute value of the
correlation coefficient.

2. Then we modify yactual such that all the parts of y that can be approxi-
mated with the regressors already chosen are subtracted, setting yactual to
y − ŷ(c, xA). Here ŷ(c, xA) is the linear best approximation of y with the
use of the regressors c and xA. We can say, yactual is y made orthogonal
to the regressors already chosen.

3. Once again the accelerated version of genetic programming is used to
generate millions of very simple formulas. And now we select that formula
xB which is correlated strongest with the actual dependent yactual. We
look only at absolute values again.
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4. Then once again, yactual is made orthogonal to the regressors already
chosen, so we set yactual to y − ŷ(c, xA, xB).

5. Continue in this manner, until a given number of regressor terms is se-
lected or some other termination criterion is fulfilled.

3.2 The accelerated version of genetic programming - an overview

Stopping the calculation of the correlation coefficient as early as possible, when
it can be seen that the checked individual is not worth spending additional
time, accelerates the algorithm enormously. But how can this be carried out,
if we have a population of individuals and not a single individual? In the fol-
lowing lines the major steps of the accelerated genetic programming algorithm
are described.

1. Generate an initial population with popsize individuals.
2. Evaluate each individual for n1 points of the training data set and estimate

the correlation coefficient with the actual dependent by using only these
n1 points.

3. Determine the popsizesmall best correlated individuals out of popsize,
based on the estimated correlation coefficient. We look only at the absolute
value of the correlation coefficient.

4. For these popsizesmall chosen individuals the exact value of the fitness
function (i.e. the absolute value of the correlation coefficient) using all
the points of the training data set has to be calculated.

5. Produce a new generation of popsize out of the popsizesmall chosen indi-
viduals:
• Repeat the following, until we have enough new individuals. Choose

randomly two of the popsizesmall individuals and compare their fitness.
The better one is called the winner, and the other one is called the
loser. Let the winner produce two offsprings, one is an exact copy of
the winner, and the other offspring is made via crossover (as crossover
partner, one of the popsizesmall individuals is chosen, which is neither
the winner nor the loser).

• The individual which is the best so far is always copied into the next
generation (’elitism’).

• A small part of the new generation is produced in the same way as the
initial population. This is one way of avoiding the problem with local
optima. A mutation is not needed any more.

6. Go to step 2, until a termination criterion is fulfilled.

• As termination criterion, we usually take that a specific number of gener-
ations is reached.

• The parameter popsize determines, how many individuals are evolved in
the genetic programming algorithm. The parameter popsize can take any
positive integer number. The larger popsize is, the more computation time
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is needed, and the better the results are. In our experiments, a popsize of
5000 has been used successfully.

• The parameter n1 tells the algorithm, how many points are used to get
a quick estimation of the correlation coefficient. n1 can be an arbitrary
positive integer, but n1 shall not exceed the number of training data points.
In our experiments, settings of n1 = 30, n1 = 50 and n1 = 100 have been
used successfully.

• The parameter popsizesmall determines, how many individuals of the total
population are selected to be examined in detail. The value of popsizesmall

shall be much smaller than popsize, for example popsize/10.

4 Variants of the Formula Generator Algorithm Applied
To Standard Benchmark Data Sets

4.1 The data set cpu

The data set ’cpu’ can be found in the directory ’cpu-performance’ of the
UCI-repository, which can be found in the following address:

http://www.ics.uci.edu/~mlearn/MLRepository.html

Number of instances: 209
Number of attributes: 10
The data set contains the following attributes:

vendor name: string
model name: string
MYCT: machine cycle time in nanoseconds (integer)
MMIN: minimum main memory in kilobytes (integer)
MMAX: maximum main memory in kilobytes (integer)
CACH: cache memory in kilobytes (integer)
CHMIN: minimum channels in units (integer)
CHMAX: maximum channels in units (integer)
PRP: published relative performance (integer); the dependent variable;
ERP: estimated relative performance via linear regression (integer)

At first we deleted the attributes vendorname and modelname because our
algorithm can not handle strings. Furthermore the data set contains the at-
tribute ERP , which is an old estimation for PRP . So we have to delete the
attribute ERP , because we do not want to generate an approximation for-
mula by using the results of an old approximation. This would be too easy. So
finally we have only 7 attributes remaining. Before the core of our algorithm
has been run, we split the data into two parts: 70% of the 209 instances have
been randomly chosen to play the role of the training data. And the other 30%
play the role of the test-data.
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Our algorithm has been started 10 times. Roughly 3.7 seconds are neces-
sary per term for performing the evolutionary part of the algorithm. Totally
we received ten approximation formulas, with an average MAE of 23.33 de-
termined for the test data set. The worst MAE is only 25.15, and the best
MAE is 23.06. The best formula is the following:

PRP =16.344
+ 0.0032443 · (sqrtabs((MMIN · (MMAX · CHMAX)))) (4)
+ 0.7936 · ((CACH − CHMAX) − sin(CHMAX))

The MSE of this formula is 1394.9, and the RMSE is 37.348. In our standard
benchmark paper (see [7]), various different methods have been tried out. The
best method leads to an MAE of 38.0. So compared to this paper, our method
leads to a more exact approximation.

Additionally, newer papers (see [10], [12], [2] and [1]) have been found,
where the data set cpu is used.

Conclusion: In these papers, totally 30 variants of standard
methods have been tried out. Only in 5 out of 30 cases, our
approximation formula is outperformed.

4.2 The data set friedman

The data set ’friedman’ can be found in the KEEL repository, in the following
location:

http://sci2s.ugr.es/keel/datasets1.php?SID&codeds=36

In the keel repository, benchmark papers can be found. For the friedman
data set, a quite actual (2004) benchmark paper is mentioned via the abbre-
viation ’Lee04’ (see [6]).

We try to design our experiments as similar as possible to the benchmark
paper, to get comparable results. In the benchmark paper, the following is
done:

’This is a synthetic benchmark data set. Each sample consists of
five inputs and one output. The formula for the data generation is
y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4

4 + 5x5
5 + ε, where ε is a Gaussian

random noise N(0, 1), and x1, ..., x5 are uniformly distributed over the do-
main [0, 1]. 1400 samples were created, of which 200 samples were randomly
chosen for network training and 200 samples for validation. The remaining
1000 samples were used for network testing.’

In the KEEL repository, the data sets are already available as described
in [6]. So we have a 200 sample training data set, and a 200 sample validation
data set, and a 1000 sample test data set. Unlike the benchmark paper, we do
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not need any validation data. So we only take the 200 sample training data
set to find an approximation formula, and we take the 1000 sample test data
set to determine the quality. As a quality measure, here the MSE is used,
according to the benchmark data.

Our formula detection algorithm has been run 20 times. Here we
need 13 seconds for each term, and 30 second for finding the total formula,
because the formula consists of two nonlinear terms, and four seconds are
needed in the non-evolutionary part of the algorithm. The best formula that
we get is the following:

out =4.8843
+ 10.1761 · (in4 + sin((in2 · (in1 + (in1 + in1)))))
− 5.3183 · (sin((in3 + (in3 + in3))) − in5) (5)

The MAE of this formula is 0.889281, the MSE of this formula is 1.23629,
and the RMSE is 1.11189. In the benchmark-paper (see [6]), the best method
leads to an MSE of 4.502. So our formula is much more exact.

Cross-validation and the data set friedman

For the dataset friedman, a tenfold cross validation experiment has been
performed. For this experiment, a 1200-sample version of the friedman data
set has been used, which can be downloaded from the KEEL repository, in
the following location:

http://sci2s.ugr.es/keel/datasets1.php?SID&codeds=36

After the cross-validation, we have to calculate the average error measures
on the test data files. We get an average MAE of 0.8394133, an average MSE
of 1.1127881, and an average RMSE of 1.0537323 .

So with cross validation, we finally get ten formulas. The formula, which
reaches the best quality on the corresponding test data set, is the following
formula:

out =4.9946
− 10.1215 · (sin(((in2 · in1) · (1.051813 · −2.92026))) − in4)
+ 20.4701 · ((in3 · in3) − ((−0.2465477 · in5) + in3))
+ 2.9015 · ((0.3611782 − (in1 · in2)) · (in1 · sin(in3))) (6)

This formula reached (on the test data set number 10) an MAE of 0.786382,
an MSE of 0.963263, and an RMSE of 0.981459627 . The name of the cor-
responding test data file in the KEEL repository is ’Friedman-10-10tst.dat’,
so everybody is invited to check the quality of the formula! It has to be
mentioned that here the best formula out of ten has been selected (via the
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test data), so we can not expected to get such a result in average. The
average qualities have been stated above, and are more important.

Conclusion: For the friedman data set, all the benchmark pa-
pers that we found so far (see [3], [6] and [11]), have been
outperformed by our method.
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INTRODUCTION TO MARKOV RANDOM FIELDS WITH

APPLICATIONS TO MICROSCOPY IMAGE PROCESSING

LEILA MURESAN

Introduction

Inspired by statistical physics, Markov random field models in image processing
are built by specifying local interactions, which are leading to global models. This
work is an introduction to the theory of Markov random fields (MRF), based on
the seminal paper [2]. Many successful applications are known in the literature,
some of them are summarized in [3], [1].

1. Images and degradation model

The problem considered in [2] is the computation of a maximum a posteriori
estimate (MAP) of the original image f given the degraded image g.

The original image is seen as a pair X = (F,L), where F is the matrix of
observable pixel intensities and L is the matrix of (unobservable) edge elements.
F is called intensity process, while L is the line process.

Let Zm = {(i, j) : 1 ≤ i, j ≤ m} denote the m × m integer lattice.
F = {Fij , (i, j) ∈ Zm} represent the gray levels of the original image.

The suggested relaxation algorithm maximizes the conditional probability dis-
tribution of (F,L) given the data G = g , i.e., finds the mode of the posterior
distribution P (X = x|G = g) . The Bayes estimation formulation (also known as
maximum a posteriori estimation, or penalized maximum likelihood) is: maximize
log P (G = g|X = x) + log P (X = x) as a function of x, where the second term is a
penalty term.

The model of image degradation consists of noise (N), blurring (H) and nonlin-
earities (Φ), well suited to describe the typical degradations in microscopy images:

G = Φ(H(F )) ¯ N

where ¯ denotes any invertible operation, such as addition or multiplication. At
pixel level, for each (i, j) ∈ Zm

(1.0.1) G = Φ





∑

k,l

H(i − k, j − l)Fkl



 ¯ ηij .

Furthermore F and N are supposed independent stochastic processes (as well as L
and N ).

For computational reasons, the degradation model 1.0.1 should preserve locality.
This is achieved when H is a simple convolution over a small window.

1
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2. Graphs and Neighborhoods

Definition 2.0.1. Let S = {s1, s2, . . . , sN} be a set of sites. A neighborhood
system for S is a collection of subsets of S, G = Gs, s ∈ S for which

• s /∈ Gs

• s ∈ Gr ⇐⇒ r ∈ Gs

Figure 1. Neighborhoods of order 1, 2 and 4

Figure 2. Pixel and line neighbors of a line element

Definition 2.0.2. A subset C ⊆ S is a clique if every pair of distinct sites in C
are neighbors. The set of cliques is denoted by C.

Figure 3. Cliques for neighborhoods of order 1 and 2
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3. The Hammersley-Clifford theorem

Let (S,G) be an arbitrary graph, X = {Xs, s ∈ S} a family of random variables
indexed by S. For simplicity, Xs ∈ Λ = {0, 1, 2, . . . L − 1}

Let Ω be the set of all possible configurations:

Ω = {ω = (xs1
, . . . xsN

) : xsi
∈ Λ, 1 ≤ i ≤ N}

Definition 3.0.3. X is a Markov random field (MRF) over (S,G) if

P (X = ω) > 0,∀ω ∈ Ω

P (Xs = xs|Xr = xr, r 6= s) = P (Xs = xs|Xr = xr, r ∈ G)

The P (Xs = xs|Xr = xr, r 6= s) are called the local characteristics of the MRF.

Definition 3.0.4. A Gibbs distribution relative to (S,G) is a probability measure
π on Ω having the following representation:

π(ω) =
1

Z
e

−U(ω)
T ,

where

• U(ω) =
∑

C∈C
VC(ω), is called the energy function

• The family of functions {VC , C ∈ C} where VC(ω) depends only on the
variables {xs : s ∈ C} is called a potential

• Z =
∑

ω e
−U(ω)

T is a normalizing constant and the corresponding function
is called partition function

• T is a constant which stands for temperature

T controls the degree of ”peaking” of π. When T is big, coupling between pixels
is loose, the distribution when T → ∞ is uniform. When T is small, the coupling
between pixels becomes stronger, the modes are more accentuated, easier to find by
sampling. This is the pronciple of annealing applied to the posterior distribution

π (f, l) = P (F = f, L = l|G = g)

in order to find the MAP estimate.

Theorem 3.0.5. (Hammersley-Clifford) Let G be a neighborhood system. Then X
is an MRF with respect to G if and only if π(ω) = P (X = ω) is a Gibbs distribution
with respect to G.

The theorem above provides a practical way of specifying MRF’s by specifying
appropriate potentials (instead of specifying local characteristics, which would be
extremely difficult). A proof of the theorem can be found in [4].

For the problem 1.0.1, in order to find ω which maximizes the posterior distri-
bution for a given g the following expression has to be minimized:

U(f, l) +
‖µ − Φ(g, φ(H(F )))‖

2

2σ2

The identification even of a near-optimal solution is very difficult. The approach
suggested in [2] to solve this problem is stochastic relaxation.
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4. Stochastic relaxation and the Gibbs sampler

The general computational problems are:

• Sample from the distribution π
• Minimize U over Ω
• Compute expected values

At time t, the the total configuration is X(t) = (Xs1
(t),Xs2

(t), . . . ,XsN
(t)).

The starting configuration X(0) is arbitrary.
X(t) can differ from X(t−1) at most in one coordinate : given an ordering sequence
of S : n1, n2, . . ., then Xsi

(t) = Xsi
(t − 1), i 6= nt.

At time t, for s = nt a sample for π is generated , meaning that Xnt
is updated

from the conditional distribution, based on Xr(t − 1), r ∈ Gnt
.

The computations are local, and if π is homogeneous, also identical in nature.
The following three theorems proove the correctness of the approach.

Theorem 4.0.6. (Relaxation) If for each s ∈ S the sequence nt, t ≥ 1 contains s
infinetly often, then for every starting configuration η ∈ Ω and every ω ∈ Ω

(4.0.2) lim
t→∞

P (X(t) = ω|X(0) = η) = π(ω)

The Markov chain X(t), t = 0, 1, 2, . . . has the equilibrium distribution π.

Theorem 4.0.7. (Annealing) Assume that there exists an integer τ ≥ N such
that for every t = 0, 1, 2 . . . S ⊆ {nt+1, nt+2, . . . nt+τ}. Let T (t) be any decreasing
sequence of temperature for which:

• T (t) → 0 as t → ∞
• T (t) ≥ N∆/ log t for all t ≥ t0 for some integer t0 ≥ 2

Then for any starting configuration η ∈ Ω and for every ω ∈ Ω

(4.0.3) lim
t→∞

P (X(t) = ω|X(0) = η) = π0(ω)

Theorem 4.0.8. (Ergodicity) Assume that there exists an integer τ such that S ⊆
{nt+1, nt+2, . . . nt+τ} for all t. Then for every function Y on Ω and for every
starting configuration η ∈ Ω

(4.0.4) lim
t→∞

1

n

n
∑

t=1

Y (X(t) =

∫

Ω

Y (ω)dπ(ω)
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